Fundamentals
Lasers are distinguished from other light sources by their coherence. Spatial coherence is typically expressed through the output being a narrow beam, which is diffraction-limited. Laser beams can be focused to very tiny spots, achieving a very high irradiance, or they can have very low divergence in order to concentrate their power at a great distance. Temporal (or longitudinal) coherence implies a polarized wave at a single frequency, whose phase is correlated over a relatively great distance (the coherence length) along the beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase that vary randomly with respect to time and position, thus having a short coherence length.
Lasers are characterized according to their wavelength in a vacuum. Most "single wavelength" lasers actually produce radiation in several modes with slightly different wavelengths. Although temporal coherence implies monochromaticity, there are lasers that emit a broad spectrum of light or emit different wavelengths of light simultaneously. Some lasers are not single spatial mode and have light beams that diverge more than is required by the diffraction limit. All such devices are classified as "lasers" based on their method of producing light, i.e., stimulated emission. Lasers are employed where light of the required spatial or temporal coherence can not be produced using simpler technologies.
Terminology
The word laser started as an acronym for "light amplification by stimulated emission of radiation". In this usage, the term "light" includes electromagnetic radiation of any frequency, not only visible light, hence the terms infrared laser, ultraviolet laser, X-ray laser and gamma-ray laser. Because the microwave predecessor of the laser, the maser, was developed first, devices of this sort operating at microwave and radio frequencies are referred to as "masers" rather than "microwave lasers" or "radio lasers". In the early technical literature, especially at Bell Telephone Laboratories, the laser was called an optical maser; this term is now obsolete.
A laser that produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation", would have been more correct. With the widespread use of the original acronym as a common noun, optical amplifiers have come to be referred to as "laser amplifiers", notwithstanding the apparent redundancy in that designation.
The back-formed verb to lase is frequently used in the field, meaning "to produce laser light," especially in reference to the gain medium of a laser; when a laser is operating it is said to be "lasing." Further use of the words laser and maser in an extended sense, not referring to laser technology or devices, can be seen in usages such as astrophysical maser and atom laser.
Comments
Post a Comment