Biological effects




Bioelectromagnetics is the study of the interactions and effects of EM radiation on living organisms. The effects of electromagnetic radiation upon living cells, including those in humans, depends upon the radiation's power and frequency. For low-frequency radiation (radio waves to visible light) the best-understood effects are those due to radiation power alone, acting through heating when radiation is absorbed. For these thermal effects, frequency is important as it affects the intensity of the radiation and penetration into the organism (for example, microwaves penetrate better than infrared). It is widely accepted that low frequency fields that are too weak to cause significant heating could not possibly have any biological effect.

Despite the commonly accepted results, some research has been conducted to show that weaker non-thermal electromagnetic fields, (including weak ELF magnetic fields, although the latter does not strictly qualify as EM radiation), and modulated RF and microwave fields have biological effects. Fundamental mechanisms of the interaction between biological material and electromagnetic fields at non-thermal levels are not fully understood.

The World Health Organization has classified radio frequency electromagnetic radiation as Group 2B - possibly carcinogenic. This group contains possible carcinogens such as lead, DDT, and styrene. For example, epidemiological studies looking for a relationship between cell phone use and brain cancer development, have been largely inconclusive, save to demonstrate that the effect, if it exists, cannot be a large one.

At higher frequencies (visible and beyond), the effects of individual photons begin to become important, as these now have enough energy individually to directly or indirectly damage biological molecules. All UV frequences have been classed as Group 1 carcinogens by the World Health Organization. Ultraviolet radiation from sun exposure is the primary cause of skin cancer.

Thus, at UV frequencies and higher (and probably somewhat also in the visible range), electromagnetic radiation does more damage to biological systems than simple heating predicts. This is most obvious in the "far" (or "extreme") ultraviolet. UV, with X-ray and gamma radiation, are referred to as ionizing radiation due to the ability of photons of this radiation to produce ions and free radicals in materials (including living tissue). Since such radiation can severely damage life at energy levels that produce little heating, it is considered far more dangerous (in terms of damage-produced per unit of energy, or power) than the rest of the electromagnetic spectrum.

Use as weaponedit

The heat ray is an application of EMR that makes use of microwave frequencies to create an unpleasant heating effect in the upper layer of the skin. A publicly known heat ray weapon called the Active Denial System was developed by the US military as an experimental weapon to deny the enemy access to an area. A death ray is a weapon that delivers heat ray electromagnetic energy at levels that injure human tissue. The inventor of the death ray, Harry Grindell Matthews, claims to have lost sight in his left eye while developing his death ray weapon based on a primitive microwave magnetron from the 1920s (a typical microwave oven induces a tissue damaging cooking effect inside the oven at about 2 kV/m).citation needed

Comments

Popular posts from this blog

Visibility

Painting

Discovery